Human adult bone marrow mesenchymal stem cells repair experimental conduction block in rat cardiomyocyte cultures.
نویسندگان
چکیده
OBJECTIVES We evaluated whether human adult bone marrow-derived mesenchymal stem cells (hMSCs) could repair an experimentally induced conduction block in cardiomyocyte cultures. BACKGROUND Autologous stem cell therapy is a novel treatment option for patients with heart disease. However, detailed electrophysiological characterization of hMSCs is still lacking. METHODS Neonatal rat cardiomyocytes were seeded on multi-electrode arrays. After 48 h, abrasion of a 200- to 450-microm-wide channel caused conduction block. Next, we applied adult hMSCs (hMSC group, n = 8), human skeletal myoblasts (myoblast group, n = 7), rat cardiac fibroblasts (fibroblast group, n = 7), or no cells (control group, n = 7) in a channel-crossing pattern. Cross-channel electrical conduction was analyzed after 24 and 48 h. Intracellular action potentials of hMSCs and cardiomyocytes were recorded. Immunostaining for connexins and intercellular dye transfer (calcein) assessed the presence of functional gap junctions. RESULTS After creation of conduction block, two asynchronously beating fields of cardiomyocytes were present. Application of hMSCs restored synchronization between the two fields in five of eight cultures after 24 h. Conduction velocity across hMSCs (0.9 +/- 0.4 cm/s) was approximately 11-fold slower than across cardiomyocytes (10.4 +/- 5.8 cm/s). No resynchronization occurred in the myoblast, fibroblast, or control group. Intracellular action potential recordings indicated that conduction across the channel presumably occurred by electrotonic impulse propagation. Connexin-43 was present along regions of hMSC-to-cardiomyocyte contact, but not along regions of cardiomyocyte-to-myoblast or cardiomyocyte-to-fibroblast contact. Calcein transfer from cardiomyocytes to hMSCs was observed within 24 h after co-culture initiation. CONCLUSIONS Human mesenchymal stem cells are able to repair conduction block in cardiomyocyte cultures, probably through connexin-mediated coupling.
منابع مشابه
Human Mesenchymal Stem Cells and Their, Clinical Aapplication
There are two main categories for stem cells a cording to their origin: Embryonic Stem Cells and Adult Stem Cell. Mesenchymal stem cell, supporting hematopoetic stem cells in bone marrow, can regenerate tissues such as bone, cartilage, muscle, tendon and fatty tissue. These cells were recognized for the first time by Friedenstein and Petrokova who could isolate theme from rat bone marrow.Mesenc...
متن کاملEvaluation of In Vitro Differentiation of Cardiomyocyte-like cells Derived from Human Bone Marrow Mesenchymal Stem Cells
Purpose: To investigate the in vitro differentiation process of cardiomyocyte-like cells derived from human bone marrow mesenchymal stem cells under the influence of 5-azacytidine (5-aza). Materials and Methods: After purification, human bone marrow mesenchymal stem cells were exposed to 5-aza at a concentration of 5 μmol for 5 weeks to induce cardiomyocyte differentiation. To induce differenti...
متن کاملEffect of Lithium Chloride on Proliferation and Bone Differentiation of Rat Marrow-Derived Mesenchymal Stem Cells in Culture
Objective(s) It is believed that the mesenchymal stem cell (MSC) differentiation and proliferation are the results of activation of wnt signaling pathway. On the other hand, lithium chloride is reported to be able to activate this pathway. The objective of this study was to investigate the effect of lithium on in vitro proliferation and bone differentiation of marrow-derived MSC. Materials and ...
متن کاملGrowth Kinetics and in Vitro Aging of Mesenchymal Stem Cells Isolated From Rat Adipose Versus Bone Marrow Tissues
Objective- To investigate and compare growth potential as well as aging of mesenchymal stem cells (MSCs) derived from rat bone marrow tissue and adipose tissue (AT) occurred at epicardial and epididymal regions. Design- Experimental study. Animals- 10 Wistar Rats. Procedures- Rat MSCs occurred at bone marrow and epicardial and epididymal AT were isolated and culture expanded through sev...
متن کاملBIO treatment enhances rat marrow-derived mesenchymal stem cell in vitro proliferation and viability
Introduction: Previous investigations have indicated that the presence of BIO (6-Bromoindirubin-3-Oxime) in medium of some cell culture enhances the cell proliferation and viability. The aim of the present study was to investigate the BIO effects on in vitro expansion of rat marrow-derived mesenchymal stem cells (MSCs) culture. Methods: In the present experimental study, bone marrow cells from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American College of Cardiology
دوره 46 10 شماره
صفحات -
تاریخ انتشار 2005